If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+30x+24=0
a = 8; b = 30; c = +24;
Δ = b2-4ac
Δ = 302-4·8·24
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{33}}{2*8}=\frac{-30-2\sqrt{33}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{33}}{2*8}=\frac{-30+2\sqrt{33}}{16} $
| 1x-6=-1 | | 0=5x2-x+9 | | 1/4(2k-6)=1/12(3k+12) | | 12x-4=7x-19 | | 2=-3+x|7 | | 5x-28=2x-11 | | 8x+7=2x+-5 | | 32-5x=235 | | 16p2-8p+1=0 | | 121+47+2x+x=360 | | 2.5x-6.75=-0.5x+2.25 | | 3x-7+9-2x=2+x | | (11x-47)-(6x-2)=180 | | 0=x2+10-2 | | 12+5w-w=15 | | 32-5x=2.35 | | (11x-47)(6x-2)=180 | | 14=4+27x-16x^2 | | 8x−7=2x+5 | | 3x=180-2x+20 | | -x/3.5=9.2 | | –4+2w=–10+3w | | 4(t+1)=6t-1. | | -1x-8=-16 | | (11x-47)=180 | | v^2-10=111 | | 3x-3+66+57=180 | | 7z2+8z+3=3z2 | | 9+3a-3=6+3 | | -1.7(n-4)=2.72 | | -36=4(7+2x) | | 0=(-x+4)2 |